If it's not what You are looking for type in the equation solver your own equation and let us solve it.
764.000=2x^2+18x+324
We move all terms to the left:
764.000-(2x^2+18x+324)=0
We add all the numbers together, and all the variables
-(2x^2+18x+324)+764=0
We get rid of parentheses
-2x^2-18x-324+764=0
We add all the numbers together, and all the variables
-2x^2-18x+440=0
a = -2; b = -18; c = +440;
Δ = b2-4ac
Δ = -182-4·(-2)·440
Δ = 3844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3844}=62$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-62}{2*-2}=\frac{-44}{-4} =+11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+62}{2*-2}=\frac{80}{-4} =-20 $
| 5-5x-7x=-127 | | |4x-1|=|5x| | | 4-7x-6x=-9 | | 20/(1/4)=a | | 13=-(x-5 | | 5(96+x)=780 | | 3a^2-10a+10=0 | | 2•v=20 | | -4/7x=49 | | 2(5*6)+2(5x)+2(6x)=148 | | -18=v/4-2 | | 10m-30m-5=50-20 | | 4(96+x)=780 | | -6x-7=-55 | | (1-x2)=-12 | | 5k-20k=80 | | p^2-9p-81=-3 | | 10(m+2)=60 | | (10+4x)+1=15 | | p^2-9p=84 | | 2x–12=44 | | p^2-9p-78=0 | | t^2-8=1/3t^2-2 | | (2b+4)=6 | | 02x=225000 | | -7=8+3w | | 10x-35=0 | | 7*4^4x-4=21 | | 11=-4+3y | | 63-x=180 | | -30x-40=0 | | 180=132-u |